Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Hyg Environ Health ; 257: 114344, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430670

RESUMO

Dietary patterns provide a comprehensive assessment of food consumption, including essential nutrients and potential exposure to environmental contaminants. While pro-vegetarian (PVG) dietary patterns have shown health benefits in adults, their effects on children are less well studied. This study aims to explore the association between children's adherence to the most common PVG dietary patterns and their exposure to metals, assessed through urine concentration. In our study, we included a population of 723 children aged 4-5-years from the INfancia y Medio Ambiente (INMA) cohort in Spain. We calculated three predefined PVG dietary patterns, namely general (gPVG), healthful (hPVG), and unhealthful (uPVG), using dietary information collected through a validated Food Frequency Questionnaire. Urinary concentrations of various essential and heavy metals (Co, Cu, Zn, Se, Mo, Pb, and Cd) were measured using mass spectrometry. Additionally, urinary arsenic speciation, including arsenobetaine (AsB), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), and inorganic arsenic (iAs), was measured. The sum of urinary MMA and iAs was used to assess iAs exposure. We estimated primary (PMI) and secondary iAs methylation (SMI) indices. To explore the association between PVG dietary patterns in quintiles and metal exposure, we utilized multiple-adjusted linear regression models and the quantile g-computation approach. Compared with the lowest quintile, participants in the highest quintile of gPVG showed a 22.7% lower urinary Co (95% confidence interval (CI): -38.7; -1.98) and a 12.6% lower Se (95%CI: -22.9; -1.00) concentrations. Second quintile of adherence to hPVG was associated with a 51.7% lower urinary iAs + MMA concentrations (95%CI: -74.3; -8.61). Second quintile of adherence to an uPVG was associated with a 13.6% lower Se levels (95%CI: -22.9; -2.95) while the third quintile to this pattern was associated with 17.5% lower Mo concentrations (95%CI: -29.5; -2.95). The fourth quintile of adherence to gPVG was associated with a 68.5% higher PMI and a 53.7% lower SMI. Our study showed that adherence to a gPVG dietary pattern in childhood may modestly reduce the intakes of some essential metals such as Co and Se. Further investigations are warranted to explore any potential health implications.


Assuntos
Arsênio , Arsenicais , Metais Pesados , Criança , Adulto , Humanos , Arsênio/análise , Exposição Ambiental/análise , 60408 , Metais Pesados/análise
2.
Expo Health ; 16(1): 87-99, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313597

RESUMO

In Bangladesh most agronomic biomass (straw, husk, dried dung) is burnt for domestic cooking use. Consequently, the soil is continuously stripped of mineral nutrients and carbon (C) substrate. Here we investigate if recycling of household ash (ash) as fertilizer can sustainably improve soil fertility as well as minimise accumulation of toxic elements (As, Cd) in rice grain. Large scale field trials across two geographic regions (Barind, Madhupur) and two seasons (wet, dry) and with application of 3 fertiliser treatments (NPKS, ash, NPKS + ash) were conducted. At the end of each season, the impact of region*season*treatment on soil microbial comunities, rice yield, and grain quality (As, Cd, nutrient elements) was assessed. When compared to conventional field application rates of NPKS (control), application of ash boosted rice yield by circa. 20% in both regions during wet and dry season, with no effect on rice grain carcinogenic inorganic arsenic (iAs), dimethylarsonic acid (DMA) or cadmium (Cd), but with potential to increase zinc (Zn). For soil microbial communities, a significant region and season effect as well as correlation with elements in rice grain was observed, amongst these Cd, Zn, iAs and DMA. This study illustrates that application of ash can reduce the requirement for expensive chemical fertiliser, whilst at the same time increasing rice yield and maintaining grain quality, making farming in Bangladesh more sustainable and productive. The study also implies that the combined impact of region, season, and soil microbes determines accumulation of elements in rice grain. Supplementary Information: The online version contains supplementary material available at 10.1007/s12403-023-00539-y.

3.
PLoS One ; 17(9): e0274215, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36083997

RESUMO

Ingested inorganic arsenic (iAs) is a human carcinogen that is also linked to other adverse health effects, such as respiratory outcomes. Yet, among populations consuming low-arsenic drinking water, the impact of iAs exposure on childhood respiratory health is still uncertain. For a Spanish child study cohort (INfancia y Medio Ambiente-INMA), low-arsenic drinking water is usually available and ingestion of iAs from food is considered the major source of exposure. Here, we explored the association between iAs exposure and children's respiratory outcomes assessed at 4 and 7 years of age (n = 400). The summation of 4-year-old children's urinary iAs, monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) was used as a biomarker of iAs exposure (∑As) (median of 4.92 µg/L). Children's occurrence of asthma, eczema, sneeze, wheeze, and medication for asthma and wheeze at each assessment time point (i.e., 4- and 7-year) was assessed with maternal interviewer-led questionnaires. Crude and adjusted Poisson regression models using Generalized Estimating Equation (GEE) were performed to account for the association between natural logarithm transformed (ln) urinary ∑As in µg/L at 4 years and repeated assessments of respiratory symptoms at 4 and 7 years of age. The covariates included in the models were child sex, maternal smoking status, maternal level of education, sub-cohort, and children's consumption of vegetables, fruits, and fish/seafood. The GEE-splines function using Poisson regression showed an increased trend of the overall expected counts of respiratory symptoms with high urinary ∑As. The adjusted expected counts (95% confidence intervals) at ln-transformed urinary ∑As 1.57 (average concentration) and 4.00 (99th percentile concentration) were 0.63 (0.36, 1.10) and 1.33 (0.61, 2.89), respectively. These exploratory findings suggest that even relatively low-iAs exposure levels, relevant to the Spanish and other populations, may relate to an increased number of respiratory symptoms during childhood.


Assuntos
Arsênio , Arsenicais , Asma , Água Potável , Animais , Arsênio/análise , Arsênio/toxicidade , Asma/induzido quimicamente , Asma/epidemiologia , Biomarcadores , Ácido Cacodílico , Pré-Escolar , Água Potável/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Humanos
4.
Environ Sci Technol ; 56(10): 6415-6425, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35502933

RESUMO

International food trade is fundamental to global food security but with often negative consequences in the producing country. We propose a method of quantifying flows of inorganic arsenic (iAs) and embedded increased lifetime cancer risks (EHR) at a global scale, where negative impacts are felt on the importing country. Computations were made for 153 countries. Vietnam exports the most iAs embedded in rice (796 kg/year) followed by India (788 kg/year), Thailand (485 kg/year), and the United States (323 kg/year). We show that continental China, Indonesia, and Malaysia have the highest imports of iAs (292, 174, and 123 kg/year, respectively). Bangladesh ranks highest in EHR followed by Vietnam and Cambodia (150, 141, and 111 per 100,000, respectively). Countries that depend exclusively on imported rice are importing a substantial amount of risk, as, e.g., Kiribati and Solomon Islands (57 and 53 per 100,000, respectively). We discuss the potential policy options for reducing population dietary health risks by well-balanced apportioning of rice sources. This study targets policy design solutions based on health gains, rather than on safe levels of the risk factor alone.


Assuntos
Arsênio , Arsenicais , Oryza , Arsênio/análise , Dieta , Contaminação de Alimentos/análise
5.
Environ Sci Technol ; 55(12): 7757-7769, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34048658

RESUMO

The Anthropocene has led to global-scale contamination of the biosphere through diffuse atmospheric dispersal of arsenic. This review considers the sources arsenic to soils and its subsequent fate, identifying key knowledge gaps. There is a particular focus on soil classification and stratigraphy, as this is central to the topic under consideration. For Europe and North America, peat core chrono-sequences record massive enhancement of arsenic depositional flux from the onset of the Industrial Revolution to the late 20th century, while modern mitigation efforts have led to a sharp decline in emissions. Recent arsenic wet and dry depositional flux measurements and modern ice core records suggest that it is South America and East Asia that are now primary global-scale polluters. Natural sources of arsenic to the atmosphere are primarily from volcanic emissions, aeolian soil dust entrainment, and microbial biomethylation. However, quantifying these natural inputs to the atmosphere, and subsequent redeposition to soils, is only starting to become better defined. The pedosphere acts as both a sink and source of deposited arsenic. Soil is highly heterogeneous in the natural arsenic already present, in the chemical and biological regulation of its mobility within soil horizons, and in interaction with climatic and geomorphological settings. Mineral soils tend to be an arsenic sink, while organic soils act as both a sink and a source. It is identified here that peatlands hold a considerable amount of Anthropocene released arsenic, and that this store can be potentially remobilized under climate change scenarios. Also, increased ambient temperature seems to cause enhanced arsine release from soils, and potentially also from the oceans, leading to enhanced rates of arsenic biogeochemical cycling through the atmosphere. With respect to agriculture, rice cultivation was identified as a particular concern in Southeast Asia due to the current high arsenic deposition rates to soil, the efficiency of arsenic assimilation by rice grain, and grain yield reduction through toxicity.


Assuntos
Arsênio , Arsênio/análise , Europa (Continente) , Ásia Oriental , América do Norte , Solo , América do Sul
6.
Environ Pollut ; 268(Pt A): 115821, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33158623

RESUMO

Fertilization with organic matter (farm yard manure and/or rice straw) is thought to enhance arsenic (As) mobilization into soil porewaters, with subsequent As assimilation by rice roots leading to enhanced translocation to the grain. Here, interlinked experiments (field manuring and soil batch culture) were conducted to find the effect of organic matter at a field application rate practiced in Bangladesh (5 t/ha) on As mobilization in soil for paddies impacted by As contaminated groundwater irrigation, a widespread phenomenon in Bangladesh where the experiments were conducted. Total As concentration in a paddy soil (Sonargaon) ranged from 21.9 to 8.1 mg/kg down the soil profile and strongly correlated with TOC content. Arsenic, Fe, Mn, and DOC release into soil solution, and As speciation, are intimately linked to OM amendment, soil depth and temporal variation. Organic matter amendments lead to increased mobilization of As into both soil porewaters and standing surface waters. The As speciation in the porewater was dominated by inorganic As (Asi) (arsenite and arsenate), with traces amounts of methylated species (DMAV and MMAV) only being found with OM amendment. It was noted in field trials that OM fertilization greatly enhanced As mobility to surface waters, which may have major implications for the fate of As in paddy agronomic ecosystems.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Arsênio/análise , Bangladesh , Ecossistema , Esterco , Solo , Poluentes do Solo/análise
7.
Eur J Nutr ; 59(5): 1859-1867, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31321499

RESUMO

PURPOSE: The trace element iodine is a vital constituent of thyroid hormones. Iodine requirements increase during pregnancy, when even mild deficiency may affect the neurocognitive development of the offspring. Urinary iodine concentration (UIC) is the means of assessing iodine status in population surveys; a median UIC of 100-199 µg/L is deemed sufficient in a non-pregnant population. Milk is the main dietary source of iodine in the UK and Ireland. METHODS: We surveyed the iodine status of 903 girls aged 14-15 years in seven sites across the island of Ireland. Urine iodine concentration was measured in spot-urine samples collected between March 2014 and October 2015. Food group intake was estimated from iodine-specific food-frequency questionnaire. Milk-iodine concentration was measured at each site in summer and winter. RESULTS: The median UIC overall was 111 µg/L. Galway was the only site in the deficient range (median UIC 98 µg/L). All five of the Republic of Ireland sites had UIC ≤ 105 µg/L. In the two sites surveyed twice, UIC was lower in summer vs winter months [117 µg/L (IQR 76-165) vs 130 µg/L (IQR 91-194) (p < 0.01)]. Milk samples collected from Galway and Roscommon had a lower mean iodine concentration than those from Derry/Londonderry (p < 0.05). Milk intake was positively associated with UIC (p < 0.001). CONCLUSIONS: This is the largest survey of its kind on the island of Ireland, which currently has no iodine-fortification programme. Overall, the results suggest that this young female population sits at the low end of sufficiency, which has implications if, in future, they enter pregnancy with borderline status.


Assuntos
Iodo , Adolescente , Animais , Estudos Transversais , Dieta , Feminino , Humanos , Iodetos , Irlanda/epidemiologia , Leite , Estado Nutricional , Gravidez
8.
Ecotoxicol Environ Saf ; 184: 109660, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31520949

RESUMO

Roxarsone (ROX), an organoarsenic feed additive, and its metabolites, can be present in animal manure used to fertilize rice. Rice is prone to absorb arsenic, and is subject to straighthead disorder, which reduces rice yield and is linked with organic arsenic compounds. This study aims to elucidate how soil property affect arsenic accumulation in rice plants fertilized with chicken manure containing ROX metabolites. Manures of chickens fed without or with ROX, designated as control manure and ROX treated manure (ROXCM), respectively, were applied in eight paddy soils of different origins, to investigate the assimilation of arsenic species in rice plants. The results show that inorganic arsenic (arsenate and arsenite), monomethylarsonic acid and dimethylarsinic acid (DMA) were detected in all brown rice and husk, trace tetramethylarsonium and trimethylarsine oxide were occasionally found in these both parts, whereas all these arsenic species were determined in straw, irrespective of manure type. ROXCM application specifically and significantly increased brown rice DMA (P = 0.002), which remarkably enhanced the risk of straighthead disease in rice. Although soil total As impacted grain biomass, soil free-iron oxides and pH dominated arsenic accumulation by rice plants. The significantly increased grain DMA suggests manure bearing ROX metabolites is not suitable to be used in soils with abundant free-iron oxides and/or high pH, if straighthead disorder is to be avoided in rice.


Assuntos
Oryza/metabolismo , Roxarsona/metabolismo , Poluentes do Solo/metabolismo , Solo/química , Animais , Biomassa , Galinhas/metabolismo , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Esterco/análise , Oryza/crescimento & desenvolvimento
9.
Environ Sci Technol ; 53(13): 7288-7295, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31187619

RESUMO

The speciation of arsenic in wet and dry deposition are ambiguously described in current literature. Presented here is a 2 year study quantifying arsenic species in atmospheric deposition collected daily from an E. Atlantic coastal, semirural site, with comparative urban locations. Inorganic arsenic (Asi) was the principal form of arsenic in wet deposition, with a mean concentration of 0.54 µmol/m3. Trimethylarsine oxide (TMAO) was found to be the dominant form of organic arsenic, determined as above the LoD in 33% of wet deposition samples with a mean concentration of 0.12 µmol/m3. Comparison with codeposited trace elements and prevailing weather trajectories indicated that both anthropogenic and marine sources contribute to atmospheric deposition. Analysis of dry deposition revealed it to be a less significant input to the land-surface for Asi, contributing 32% of that deposited by wet deposition. Dry deposition had a larger proportion of Asi than that found in wet deposition, with TMAO making up only 12% of the sum of species. In comparison, urban sites showed large spatial and temporal variations in organic arsenic deposition, indicating that local sources of methylated species may be likely and that further understanding of biogenic arsine evolution and degradation are required to adequately assess the atmospheric arsenic burden and subsequent contribution to terrestrial ecosystems.


Assuntos
Poluentes Atmosféricos , Arsênio , Oligoelementos , Ecossistema , Monitoramento Ambiental , Tempo (Meteorologia)
10.
Environ Res ; 174: 135-142, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31075694

RESUMO

Early-life exposure to inorganic arsenic (iAs) may adversely impact health later in life. To date, evidence of iAs adverse effects on children's neurodevelopment comes mainly from populations highly exposed to contaminated water with conflicting results. Little is known about those effects among populations with low iAs exposure from food intake. We investigated the cross-sectional association between exposure to iAs and neurodevelopment scores among children living in Spain whose main route of exposure was diet. Arsenic species concentrations in urine from 400 children was determined, and the sum of urinary iAs, dimethylarsinic acid, and monomethylarsonic acid was used to estimate iAs exposure. The McCarthy Scales of Children's Abilities was used to assess children's neuropsychological development at about 4-5 years of age. The median (interquartile range) of children's sum of urinary iAs, MMA, and DMA was 4.85 (2.74-7.54) µg/L, and in adjusted linear regression analyses the natural logarithm transformed concentrations showed an inverse association with children's motor functions (ß, [95% confidence interval]; global scores (-2.29, [-3.95, -0.63])), gross scores (-1.92, [-3.52, -0.31]) and fine scores (-1.54, [-3.06, -0.03]). In stratified analyses by sex, negative associations were observed with the scores in the quantitative index (-2.59, [-5.36, 0.17]) and working memory function (-2.56, [-5.36, 0.24]) only in boys. Our study suggests that relatively low iAs exposure may impair children's neuropsychological development and that sex-related differences may be present in susceptibility to iAs related effects; however, our findings should be interpreted with caution given the possibility of residual confounding.


Assuntos
Arsênio , Desenvolvimento Infantil/fisiologia , Exposição Ambiental/estatística & dados numéricos , Arsenicais , Ácido Cacodílico , Criança , Pré-Escolar , Estudos Transversais , Dieta , Feminino , Humanos , Masculino , Espanha
11.
Environ Int ; 127: 584-591, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30986740

RESUMO

Human exposure to arsenic (As) through the consumption of rice (Oryza sativa L.) is a worldwide health concern. In this paper, we evaluated the major causes for high inorganic As levels in cooked rice foods, and the potential of post-harvesting and cooking options for decreasing inorganic As content in cooked rice, focusing particularly on As endemic areas. The key factors for high As concentration in cooked rice in As endemic areas are: (1) rice cultivation on As-contaminated paddy soils; (2) use of raw rice grains which exceed 200 µg kg-1 of inorganic As to cook rice; and (3) use of As-contaminated water for cooking rice. In vitro and in vivo methods can provide useful information regarding the bioaccessibility of As in the gastrointestinal tract. Urinary levels of As can also be used as a valid measure of As exposure in humans. Polishing of raw rice grains has been found to be a method to decrease total As content in cooked rice. Sequential washing of raw rice grains and use of an excess volume of water for cooking also decrease As content in cooked rice. The major concern with those methods (i.e. polishing of raw rice, sequential washing of raw rice, and use of excess volume of water for cooking rice) is the decreased nutrient content in the cooked rice. Cooking rice in percolating water has recently gained significant attention as a way to decrease As content in cooked rice. Introducing and promoting rainwater harvesting systems in As endemic areas may be a sustainable way of reducing the use of As-contaminated water for cooking purposes. In conclusion, post-harvesting methods and changes in cooking practices could reduce As content in cooked rice to a greater extent. Research gaps and directions for future studies in relation to different post-harvesting and cooking practices, and rainwater harvesting systems are also discussed in this review.


Assuntos
Arsênio/análise , Oryza/química , Animais , Culinária/métodos , Contaminação de Alimentos/análise , Humanos , Fatores de Risco , Água/química
12.
Environ Sci Technol ; 53(9): 5249-5255, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30993982

RESUMO

Using village-based rice processing plants in rural Bangladesh, this study considered how parboiling rice could be altered to reduce the content of the carcinogen inorganic arsenic. Parboiling is normally conducted with rough rice (i.e., where the husk is intact) that is soaked overnight at ambient temperatures, and then either steamed or boiled for ∼10 min, followed by drying. Across 13 geographically dispersed facilities it was found that a simple alteration parboiling wholegrain, instead of rough rice, decreased the inorganic arsenic content by 25% ( P = 0.002) in the final polished grain. Also, parboiling wholegrain had little impact on milling quality of the final polished rice. The wholegrain parboiling approach caused statistically significant median enrichment of calcium, by 213%; and a reduction in potassium, by 40%; with all other nutrient elements tested being unaffected. Milled parboiled rough rice had an enriched inorganic arsenic compared to nonparboiled milled rice, but parboiling of wholegrain rice did not enrich inorganic arsenic in the final milled product. Polished rice produced from the parboiling of both rough and wholegrain rice significantly reduced cadmium compared to nonparboiled polished rice, by 25%. This study also identified that trimethylarsine oxide and tretramethylarsonium are widely elevated in the husk and bran of rice and, therefore, gives new insights into the biogeochemical cycling of arsenic in paddy ecosystems.


Assuntos
Arsênio , Oryza , Bangladesh , Cálcio , Ecossistema
13.
Environ Sci Pollut Res Int ; 26(6): 6209-6215, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30617894

RESUMO

The environmental and human health risk posed by veterinary antibiotics is of global concern. Antibiotic uptake by herbal plants has been studied, but little is known about perennial woody fruit crops. Litchi (Litchi chinensis Sonn.), a longevial fruit tree, is routinely fertilized with animal manure and, therefore, may be at risk of antibiotic uptake into its fruits. This study investigated the degradation of chlortetracycline and doxycycline present in manure used to amend orchard soil, and their subsequent assimilation by litchi plant, as affected by manure application rate. The results show that half-lives of chlortetracycline and doxycycline in soil were decreased by increased manure rate, with an average of 27 and 59 days, respectively. Chlortetracycline was readily transported to litchi shoots and increased with the growth of litchi plants. Doxycycline predominantly remained in the roots, and underwent growth dilution in the plants. The two tetracyclines could not be detected in fruits from litchi trees when applied with manures, at various rates, over 2 years. For litchi, chlortetracycline may pose human health risk through manure application, but doxycycline is unlikely to do so. Long-term field experiments are required to monitor antibiotic accumulation in fruits of perennial fruit trees fertilized with animal manure.


Assuntos
Antibacterianos/metabolismo , Clortetraciclina/metabolismo , Doxiciclina/metabolismo , Litchi/metabolismo , Poluentes do Solo/metabolismo , Animais , Antibacterianos/farmacocinética , Biodegradação Ambiental , China , Clortetraciclina/farmacocinética , Doxiciclina/farmacocinética , Frutas/química , Litchi/efeitos dos fármacos , Esterco , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Solo/química , Poluentes do Solo/farmacocinética , Distribuição Tecidual , Árvores
14.
Environ Health Perspect ; 126(8): 84503, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30235424

RESUMO

The diet is emerging as the dominant source of arsenic exposure for most of the U.S. population. Despite this, limited regulatory efforts have been aimed at mitigating exposure, and the role of diet in arsenic exposure and disease processes remains understudied. In this brief, we discuss the evidence linking dietary arsenic intake to human disease and discuss challenges associated with exposure characterization and efforts to quantify risks. In light of these challenges, and in recognition of the potential longer-term process of establishing regulation, we introduce a framework for shorter-term interventions that employs a field-to-plate food supply chain model to identify monitoring, intervention, and communication opportunities as part of a multisector, multiagency, science-informed, public health systems approach to mitigation of dietary arsenic exposure. Such an approach is dependent on coordination across commodity producers, the food industry, nongovernmental organizations, health professionals, researchers, and the regulatory community. https://doi.org/10.1289/EHP3997.


Assuntos
Arsênio/efeitos adversos , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/efeitos adversos , Dieta/efeitos adversos , Contaminação de Alimentos/análise , Humanos , Medição de Risco
15.
Environ Exp Bot ; 149: 51-58, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-30100643

RESUMO

We measured the bulk grain concentrations of arsenic (As), along with rubidium (Rb) and strontium (Sr) as indicators of phloem and xylem transport respectively, in rice (Oryza sativa cv. Italica Carolina) pulsed with arsenate at two exposure levels for 5 day periods at progressively later stages of grain fill, between anthesis and maturity, through the cut flag leaf. We compared these to unexposed (negative) controls and positive controls; pulsed with dimethylarsinic acid (DMA). We collected elemental maps of As and micronutrient elements (Fe, Zn, Mn, Cu and Ni) from developing grains of rice. Exposures were either 25 or 100 µg/ml arsenate (As(V)) at various stages of grain development, compared to 25 µg/ml dimethylarsinic acid (DMA); the most efficiently transported As species identified in rice. We used the spatial distribution of arsenic in the grain to infer the presence of As transporters. By exposing grains through the flag leaf rather than via the roots, we were able to measure arsenic transport into the grain during filling under controlled conditions. Exposure to 100 µg/ml As(V) resulted in widespread As localization in both embryo and endosperm, especially in grains exposed to As at later stages of panicle development. This suggests loss of selective transport, likely to be the result of As toxicity. At 25 µg/ml As(V), As colocalized with Mn in the ovular vascular trace (OVT). Exposure to either As(V) or DMA reduced grain Fe, an effect more pronounced when exposure occurred earlier in grain development. The abundance of Cu and Zn were also reduced by As. Arsenic exposure later in grain development caused higher grain As concentrations, indicating the existence of As transporters whose efficiency increases during grain fill. We conclude that localization of As in the grain is a product of both As species and exposure concentration, and that high As(V) translocation from the flag leaf can result in high As concentrations in the endosperm.

16.
Sci Total Environ ; 642: 485-496, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29908507

RESUMO

Arsenic (As) elevation in paddy soils will have a negative impact on both the yield and grain quality of rice (Oryza sativa L.). The mechanistic understanding of As uptake, translocation, and grain filling is an important aspect to produce rice grains with low As concentrations through agronomical, physico-chemical, and breeding approaches. A range of factors (i.e. physico-chemical, biological, and environmental) govern the speciation and mobility of As in paddy soil-water systems. Major As uptake transporters in rice roots, such as phosphate and aquaglyceroporins, assimilate both inorganic (As(III) and As(V)) and organic As (DMA(V) and MMA(V)) species from the rice rhizosphere. A number of metabolic pathways (i.e. As (V) reduction, As(III) efflux, and As(III)-thiol complexation and subsequent sequestration) are likely to play a key role in determining the translocation and substantial accumulation of As species in rice tissues. The order of translocation efficiency (caryopsis-to-root) for different As species in rice plants is comprehensively evaluated as follows: DMA(V) > MMA(V) > inorganic As species. The loading patterns of both inorganic and organic As species into the rice grains are largely dependent on the genetic makeup and maturity stage of the rice plants together with environmental interactions. The knowledge of As metabolism in rice plants and how it is affected by plant genetics and environmental factors would pave the way to develop adaptive strategies to minimize the accumulation of As in rice grains.


Assuntos
Arsênio/metabolismo , Oryza/genética , Oryza/metabolismo , Melhoramento Vegetal , Raízes de Plantas , Solo , Poluentes do Solo
17.
Water Res ; 140: 403-414, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29775934

RESUMO

Rice is the main staple carbohydrate source for billions of people worldwide. Natural geogenic and anthropogenic sources has led to high arsenic (As) concentrations in rice grains. This is because As is highly bioavailable to rice roots under conditions in which rice is cultivated. A multifaceted and interdisciplinary understanding, both of short-term and long-term effects, are required to identify spatial and temporal changes in As contamination levels in paddy soil-water systems. During flooding, soil pore waters are elevated in inorganic As compared to dryland cultivation systems, as anaerobism results in poorly mobile As(V), being reduced to highly mobile As(III). The formation of iron (Fe) plaque on roots, availability of metal (hydro)oxides (Fe and Mn), organic matter, clay mineralogy and competing ions and compounds (PO43- and Si(OH)4) are all known to influence As(V) and As(III) mobility in paddy soil-water environments. Microorganisms play a key role in As transformation through oxidation/reduction, and methylation/volatilization reactions, but transformation kinetics are poorly understood. Scientific-based optimization of all biogeochemical parameters may help to significantly reduce the bioavailability of inorganic As.


Assuntos
Arsênio/análise , Oryza , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Agricultura , Arsênio/química , Arsênio/farmacocinética , Disponibilidade Biológica , Fatores Biológicos , Ecossistema , Inundações , Ferro/análise , Ferro/metabolismo , Raízes de Plantas/química , Solo/química , Poluentes do Solo/química , Poluentes do Solo/farmacocinética , Análise Espaço-Temporal
18.
Sci Rep ; 8(1): 7114, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29739998

RESUMO

Early-life exposure to inorganic arsenic (i-As) may cause long-lasting health effects, but as yet, little is known about exposure among weaning infants. We assessed exposure before and during weaning and investigated the association between solid food intake and infants' urinary arsenic species concentrations. Following the recording of a comprehensive 3 day food diary, paired urine samples (pre- and post-weaning) were collected and analyzed for arsenic speciation from 15 infants participating in the New Hampshire Birth Cohort Study. Infants had higher urinary i-As (p-value = 0.04), monomethylarsonic acid (MMA) (p-value = 0.002), dimethylarsinic acid (DMA) (p-value = 0.01), and sum of arsenic species (i-As + MMA + DMA, p-value = 0.01) during weaning than while exclusively fed on a liquid diet (i.e., breast milk, formula, or a mixture of both). Among weaning infants, increased sum of urinary arsenic species was pairwise-associated with intake of rice cereal (Spearman's ρ = 0.90, p-value = 0.03), fruit (ρ = 0.70, p-value = 0.03), and vegetables (ρ = 0.86, p-value = 0.01). Our observed increases in urinary arsenic concentrations likely indicate increased exposure to i-As during the transition to solid foods, suggests the need to minimize exposure during this critical period of development.


Assuntos
Arsênio/urina , Exposição Ambiental , Alimentos/efeitos adversos , Desmame , Arsênio/efeitos adversos , Arsênio/química , Intoxicação por Arsênico/epidemiologia , Arsenicais/química , Arsenicais/urina , Ácido Cacodílico/química , Ácido Cacodílico/urina , Feminino , Humanos , Lactente , Leite Humano/química , Oryza/efeitos adversos , Oryza/química
20.
PLoS One ; 13(3): e0194700, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29547635

RESUMO

There has been an increasing realisation that young infants are exposed to elevated concentrations of the carcinogen inorganic arsenic, relative to adults. This is because many infant food products are rice based, and rice is ~10-fold elevated in inorganic arsenic compared to most other foods. The European Commission (EC) has acted on this concern setting stricter standards for infants, 100 µg of inorganic arsenic per kg of food (100 µg/kg), as compared to adults (200 µg/kg), for rice based foods, a law that was brought into place in 1st January 2016. Here we investigate how this law has impacted on inorganic arsenic in baby food products in the UK market, and compare the findings to previous baby food surveys taken before and just after the law came into place. We find that for a wide range of UK infant products that the new regulations are being adhered to, with all samples surveyed, being under 100 µg/kg inorganic arsenic. The prevalence of pure rice products had decreased in the UK, and there appears to be careful sourcing of the rice used in these products to ensure conformity with regulations. There has been an increased presence of mixed cereal products, with rice and maize as the main ingredient, appearing on the UK market, with varying rice contents for infant porridges, cakes and mueslis, with the latter being a relatively innovative product for infant foods. There was a highly significant correlation (P<0.0001) between rice content and inorganic arsenic concentration across all infant foods. When UK infant rice cakes, breakfast cereals and porridges were compare to their general, i.e. not labelled specifically for being for infant consumption, equivalent it was found that the adult foods generally exceeded the 100 µg/kg inorganic arsenic standard for infant foods. Thus, infants should not be given rice products not specifically labelled as being for them if a lower inorganic arsenic diet is to be maintained.


Assuntos
Arsênio/análise , Dieta Livre de Glúten , Grão Comestível , Contaminação de Alimentos/legislação & jurisprudência , Contaminação de Alimentos/prevenção & controle , Legislação sobre Alimentos/normas , Oryza , Arsênio/toxicidade , Criança , Pré-Escolar , Grão Comestível/química , União Europeia , Contaminação de Alimentos/análise , Inocuidade dos Alimentos/métodos , Humanos , Lactente , Alimentos Infantis/normas , Oryza/química , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...